Environmental Acoustic Modeling of Rocket Noise to Determine Community Impacts

Michael M. James, M.S. Blue Ridge Research and Consulting, LLC Michael.James@BlueRidgeResearch.com

Alexandria Salton, M.S. Blue Ridge Research and Consulting, LLC

Micah Downing, Ph.D. Blue Ridge Research and Consulting, LLC

TRB ADC40 Summer Meeting – Portsmouth, NH Monday 21 July 2014

Rocket Vehicle Types

Concept X: Hybrid

Concept Y: Rocket plane

Vertical Takeoff/Landing

Environmental Review

- NEPA requires the consideration of environmental impacts and reasonable alternatives
- FAA regulations consider the acquisition of a launch site operator's license a Federal Action subject to environmental review
- Impacts from rocket noise are evaluated based on FAA Order 1050.1E, Change 1

Federal Aviation Administration

Rocket Launch Noise Modeling

Rocket Noise Source – How is the noise source defined?

- **Sound Propagation** *How does it travel?*
- **Sound Reception** *How is it received?*

Trajectory

Overall Sound Power

Frequency Distribution

Source Directivity

Axisymmetric source assumed at each trajectory point

- Trajectory points must be close enough to accurately represent the moving source
- Site and Vehicle
 Specific Trajectory
 Parameters:
 - + Time
 - + Latitude/Longitude
 - + Thrust
 - + Exhaust Velocity
 - Nozzle Exit Diameter

Trajectory

Overall Sound Power

Frequency Distribution

Source Directivity

Sound Power

Spectrum: Based on normalized relative sound power spectrum level versus Strouhal Number,

$$\frac{W(f)U_e}{W_{0A}d_e} \quad \text{VS} \quad \frac{fd_e}{U_e}$$

 d_e : exhaust exit diameter U_e : exhaust velocity

Spherical Spreading

Ground Interference

Atmospheric Absorption

Nonlinear

Spherical Spreading: Assumes a point source that radiates with a spherical field

$$SPL_{b,p} = L_{w,b} - 10 \log(4\pi R^2) + DI(b,\theta)$$

R: distance from source to receiver location

Ground Interference

Atmospheric Absorption

Nonlinear

- Ground Interference: Accounts for the combination of a direct wave (source to receiver) and a reflected wave (source to ground to receiver).*
- ▲ Atmospheric Turbulence: Minimizes interference effect

*Ground Interference calculated using methods by Embelton, Diagle, Chessel, Chein and Chorka

Note: Model utilizes a site specific or U.S. Standard Day 1976 atmospheric profile

Spherical Spreading

Ground Interference

Atmospheric Absorption

Nonlinear

- High Amplitude Noise
 Source with high shock
 content
- Nonlinear effects
 counteract the effect of
 atmospheric absorption
- Supporting research by McInerny, Journal of Aircraft, 1996 & Morfey and Howell, AIAA 1981
- Recent military jet noise measurements have demonstrated nonlinear propagation effects

Rocket Launch Noise: Receiver

Rocket Launch Noise: Receiver

Rocket Launch Noise: Receiver

Doppler Effect

Perception

Noise Metrics & Criteria

- Hearing Conservation: Identify population exposed to high levels based on A-weighted Maximum (L_{Amax})
 - Overlay 115 dBA contour over local maps and/or census blocks
 - + Conservative approach (flags areas of concern)
- Structural Damage: Identify probability of damage claim based on data from NASA Stennis
 - + 111 dB maximum (unweighted) level, 1 out of 1,000 houses claims
 - + 120 dB maximum (unweighted) level, 1 out of 100 houses claims
 - Conservative approach (flags areas of concern)
- ▲ Day-Night Average Sound Level (DNL): Identify community annoyance, required by FAA (Order 1050.1E, Change 1)
 - Most widely accepted metric in the US for transportation noise
 - May not be most applicable for rocket launches (limited studies/infrequent occurrence)

Rocket Launch Noise: Hearing Conservation

▲ Screen for potential population impacts, L_{Amax}=115 dBA

Rocket Launch Noise: Structural Damage

▲ Screen for potential structural damage claims, L_{max}

Rocket Launch Noise: DNL

▲ Determine population affected by > 65 dBA DNL

Rocket Launch Noise: Simulation

Google earth

Image Landsat

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Conclusions

- Emerging need for rocket environmental noise modeling and impact criteria
- Aircraft noise and rocket noise may require different impact criteria
- Further measurements and research are needed to improve:
 - + Rocket source characterization
 - + Long-range sound propagation
 - + High amplitude waveforms through complex atmosphere
 - + Environmental and community impacts

Questions? (or is it time for lunch)

